domingo, 8 de fevereiro de 2015

EQUAÇÕES DO PRIMEIRO GRAU

1.  Um eletricista comprou um rolo de fio com 50 metros de comprimento para realizar três ligações. Na primeira ligação ele utilizou 18,7 metros do fio; na 3.ª ligação, utilizou 2/3 do comprimento de fio que havia utilizado para a 2.ª ligação, restando ainda 2,3 m de fio no rolo.
Pode-se concluir que o comprimento, em metros, de fio utilizado na 3.ª ligação foi
(A) 14,3.
(B) 13,2.
(C) 12,9.
(D) 11,6.
(E) 10,8.
Seja x a quantidade de fio utilizada na segunda ligação. Temos:
18,7 + x + 2x/3 + 2,3 = 50
x + 2x/3 = 50 – 18,7 – 2,3
(3x + 2x)/3 = 29
5x = 29.3
x = 87/5
x = 17,4 

Lembrando que x é a quantidade utilizada na segunda ligação. A quantidade utilizada na terceira foi 2/3 de 17,4:
17,4.2/3 = 34,8/3 = 11,6


 2.Ao somar todos os gastos da semana, Maria somou, por engano, duas vezes o valor da conta do supermercado, o que resultou num gasto total de R$ 832,00. Porém, se ela não tivesse somado nenhuma vez a conta do supermercado, o valor encontrado seria R$ 586,00. O valor correto dos gastos de Maria durante essa semana foi
(A) R$ 573,00.
(B) R$ 684,00.
(C) R$ 709,00.
(D) R$ 765,00.
(E) R$ 825,00
Sendo x o gasto com o supermercado, temos:
586 + 2x = 832
2x = 832 – 586
2x = 246
x = 246/2
x = 123
Logo,
586 + 123 = 709

3.Em um dado momento em que Ari e Iná atendiam ao público nos guichês de dois caixas de uma Agência do Banco do Brasil, foi observado que a fila de pessoas à frente do guichê ocupado por Ari tinha 4 pessoas a mais que aquela formada frente ao guichê que Iná ocupava. Sabendo que, nesse momento, se 8 pessoas da fila de Ari passassem para a fila de Iná, esta última ficaria com o dobro do número de pessoas da de Ari, então, o total de pessoas das duas filas era:
(A) 24.
(B) 26.
(C) 30.
(D) 32.
(E) 36.
Vamos considerar que no início haviam x pessoas na fila de Iná e x+4 pessoas na fila de Ari.
Após passarem 8 pessoas da fila de Ari para Iná passamos a ter: x+8 pessoas na fila de Iná e x-4 na fila de Ari. Veja que a questão fala que neste momento Iná fica com o dobro de Ari. Vamos montar a equação:
2(x – 4) = x + 8
2x – 8 = x + 8
2x – x = 8 + 8
x = 16
Logo, existiam x + x + 4 = 16 + 16 + 4 = 36 pessoas


4.Existe um número que somado com seu triplo é igual ao dobro desse número somado com doze.
O valor desse número é:
A) 3
B) 4
C) 5
D) 6
E) 7
Como não sabemos qual é esse número, vamos chamá-lo de x:
x + 3x = 2x + 12
4x = 2x + 12
4x – 2x = 12
2x = 12
x = 12/2
x = 6



Nenhum comentário:

Postar um comentário